

Fraunhofer Institute for Applied Optics and Precision Engineering IOF

Optical bonding technologies

Interlayer-free bonding technologies of glass and crystalline optical components

Optical bonding technologies

Interlayer-free bonding technologies of glass and crystalline optical components

Cover: Interlayer-free bonded prism-grating-prism.

Top: Beam splitter cube with dielectric coating.

Goal

We develop bonding technologies for optical components with regard to a variety of external requirements (e.g. high power laser loads, applications in harsh environments, lithography). Adapted to the application and materials, plasma-activated or silicate bonding is used to fabricate high-precision components with high mechanical stability (up to 80 % of the bulk materials strength) and high transparency. Surface figure and roughness correction is possible to meet the appropriate requirements.

Plasma-activated direct bonding

- Process
 - Extensive materials adapted cleaning
 - Plasma activation
 - High precision alignment
 - Annealing at moderate temperatures (~ 250 °C)
- Requirements
 - Chemical stability against cleaning agents
 - $-\lambda/10$ surface flatness (stiff geometry)
 - Surface roughness ≤ 0.5 nm rms (10 x 10 µm² measurement area in atomic force microscopy)

Silicate bonding

- Process
 - Extensive materials adapted cleaning
 - Application of bonding solution
 - High precision alignment
 - Annealing at moderate temperatures (~ 250 °C)
- Process requirements
 - Chemical stability against cleaning and bonding agents
 - 3 μm PV surface flatness
 - Surface roughness \leq 3 nm rms

Silicate bonded achromatic lense doublet.

Contact

Department Precision Optical Components and Systems

Head of Department Dr. Stefan Risse Phone +49 3641 807-313 stefan.risse@iof.fraunhofer.de

Scientific Group

Bonding technologies Dr. Carolin Rothhardt Phone +49 3641 807-304 Carolin.rothhardt@iof.fraunhofer.de

Fraunhofer IOF Albert-Einstein-Strasse 7 07745 Jena Germany www.iof.fraunhofer.de

www. more info