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ABSTRACT

Industrial robots have been an essential part of production facilities for many years. They allow fast and precise
positioning of even the largest loads with very high repeatability. However, there are still many processes which
are superiorly or more economically executed by humans. If a component requires several work steps, some of
which are better suited to a robot and some to a human worker, cooperation between humans and robots would
be beneficial. Due to the enormous power and speed of industrial robots, this poses a considerable risk to the
worker. Therefore, tasks to be performed by humans and robots are usually completely decoupled in terms of
space or time.

We suggest an approach, which allows a human worker to interact safely with a fast industrial robot. We
achieve this by constantly monitoring the position of both robot and human and adjusting the robot’s velocity
according to its proximity to the worker. We present an interaction booth, which can be entered by a robot
arm from the back and a worker from the front such that they can both access the machinery within. A multi-
camera sensor, which is based on the shape-from-silhouette principle, constantly observes the booth to monitor
its occupancy. We demonstrate that within 50 ms, our sensor can (1) detect a change in occupancy in the booth,
(2) classify sub-volumes as “robot”, “human”, or “other object”, (3) calculate the distance between human and
robot, and (4) output this information to the robot controller. The working speed of the robot is then adjusted
according to its distance to the worker.
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1. INTRODUCTION

The interaction between fast and powerful industrial robots and human workers is challenging. In particular it is
difficult to ensure the safety of the humans within reach of the robot due to the enormous forces the fast moving
robot can exercise in a collision event. It is therefor necessary to absolutely avoid such collisions.

Today, tasks to be performed by humans and robots are usually completely decoupled in terms of space or
time. Areas where robots work are closed for human workers. Entrances are guarded by safety light barriers or
similar devices to detect when a human enters. While these devices can be considered safe in terms of reliability
and measurement latency, they can only provide binary output, i.e. a human has entered or not. Therefor the
reaction can also only be binary: robot running, or robot stopped. True interactions between robots and humans
are ruled out by this approach.
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In contrast, our approach is to continuously monitor the positions of both the robot and humans in the same
work space. We then adjust the working speed of the robot according to its proximity to the humans. The robot
will eventually stop when it comes very close to a human, but before that it will gradually reduce its working
velocity. While the position of the robot can be sensed with internal sensors, the position of the human workers
must be determined by external sensors. Furthermore, these sensors must provide the positional information
continuously and with a short time delay between sensing and information availability. Camera based sensors
can determine a workers position in 2D. Combining several cameras into a multi-camera sensor can also provide
3D positional information.

Multi-camera systems have been used for many years for security applications, e.g. to monitor factory
premises. The availability of inexpensive digital cameras makes it possible to generate data volumes that can
hardly be monitored by individual employees. This has led to the need to partially or completely automate
these monitoring tasks. Among other things, tracking people and objects through the viewing areas of multiple
cameras is a major area of research. A review of the methods can be found in.1 Closely related is the task of
determining the position of people in large spaces captured by multiple cameras. A main application here are
sporting events, such as football matches, where the positions of players on the pitch need to be determined
automatically. Most of these methods have in common that they work in 2D: People or objects are detected
on a common plane representing the ground, so that a map of positions is generated in top view. (e.g.2,3) A
similar approach is to determine 2D positions within camera images stitched together using homographies, i.e.,
also in a plane (e.g.,4). While some of these methods are real-time capable, they are less suitable for workspace
monitoring because of their 2D data representation.

In contrast, the Shape From Silhouettes method can be applied to generate a volumetric representation of
objects whose silhouettes are detected in the camera images. If a voxel volume is used for data representation,
the method is also called Voxel Carving. A review of the method can be found in.5 In,6 the method was
used in conjunction with multiple cameras to capture actors in real-time at low resolution (643 voxels) in 3D
and insert them into virtual scenes. In7 another similar real-time capable method is proposed. These methods
allow the fast measurement of the general shape of an object. The detailed 3D-geometry of the surface is not
measured. In particular, the voxel carving method classifies parts of the monitored volume as occupied or not
occupied.

2. METHOD

We divide a working volume with a regular grid of voxels. Each voxel is a cubic volume with a side length of
20 mm. Our first goal is, to classify each voxel into one of two categories: occupied, and empty. In Fig. 1, we
show a simplified 2D example of correct and incorrect voxel classification.

Figure 1. Principle of voxel classification. White voxels are classified as empty. Left: the green voxels have been correctly
classified as occupied. Middle: the yellow voxels have been incorrectly classified as occupied. Right: the red voxels have
been incorrectly classified as empty.

Every measurement system produces errors. For our case of work space monitoring some measurement errors
can lead to severe safety issues, while others are less severe. In selecting a sensor system it is important to first
categorize these errors:
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1. Voxels are incorrectly labeled as occupied (Fig. 1 middle). This type of measurement error can lead
to voxels not being used, although this would actually be possible. This can lead to slowdowns in the
workflow or even to a standstill. However, unexpected collisions are not to be expected. This case is not a
safety risk.

2. Voxels are incorrectly labeled as empty (Fig. 1 right). This type of measurement error can lead to
collisions, e.g. when the robot enters a volume where a human is located, but which was incorrectly labeled
as empty. A significant safety risk thus arises.

The great difference in the hazard resulting from these two types of measurement errors demands different
prioritization: Type 2 must be avoided under all circumstances. Type 1, on the other hand, is tolerable to a
certain degree in most applications. In case of doubt, a voxel must therefore always be marked as occupied.
This must also be ensured in the event of an undetected (partial) failure of the measurement system. The voxel
carving method can be implemented such that it fullfills these requirements (Fig. 2).

0 1 2 3 No. of cameras seeing through

Figure 2. Measuring principle of our voxel carving sensor. Left: A measuring cell with two objects (red) is observed by
one camera, the purple areas can be labeled as empty because the camera records the cell background there. Middle: the
same volume is observed by two cameras. Right: observation with three cameras. All areas which are still white (or red)
cannot be labeled as empty and are therefore labeled as occupied.

Each of the cameras captures a background image at system startup. With each consecutive exposure, the
image then captured is compared with the background image. If a particular area within the new image has
changed compared to the background, this means that there is an object between the background and the camera.
If, on the other hand, the background is visible, there is no object in the line of sight. Voxels along it can then
be marked as empty. The remaining voxels, are assumed to be occupied. Figure 2 shows an example of the
principle.

Thus, it is never required to explicitly detect an object in the foreground. In terms of prioritizing measurement
error handling (see above), this means:

� When a camera fails, fewer voxels are marked empty, more voxels are marked occupied. So there is no
immediate safety risk.

� In case of sudden change in lighting conditions (e.g. due to lighting failure, light reflections, direct sunlight),
in the worst case a change from the background image is detected, marking fewer voxels as empty, which
leads to no immediate safety risk.

We have built an interaction booth, including a working volume of 1.2 m × 0.5 m × 0.5 m. The working volume
can be entered by a robot arm from the back and a worker from the front. Both the worker and the robot can
access the machinery within. The volume is constantly monitored by 4 cameras. From the camera images we
first calculate an occupation model loosely based on the voxel carving method described in.7 We then classify
the voxels as worker or robot, based on their topological connection to the front or back of the working volume.
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Afterwards, we calculate the shortest distance between robot and human as the shortest distance between the
two voxel classes. This distance is quantized and output to the robot controller to adjust the robot’s working
velocity (the closer, the slower).

2.1 Experimental Setup

Two of the cameras are placed above the volume on the two short sides and two to the right and left of the
measurement volume, respectively. The properties of the cameras are listed in table 1. The measurement cell is
shown in figures 3 and 4.

Table 1. Technical data of the camera system.

Number of cameras 4
Sensor type Global shutter with bayer color filter

Pixel resolution 832 × 632 Pixel
Focal lengths of the lenses 3.2 mm (lower cams) 4.8 mm (upper cams)

Framerate 70 Hz
Image integration time 10 ms

Trigger signal Common hardware trigger for all 4 cameras

Figure 3. View from the right front into the measuring cell. The four cameras are marked with red arrows.

We chose light green as the background color with additional blue markers. These colors have the advantage
that they contrast well with human skin of different types. In addition, the heterogeneity of the background
ensures that if an object with background-like color and brightness is held in the measurement volume, confusion
with the background occurs only partially, but not over the entire surface. The markers are used to check the
camera position at power-on to ensure they have not moved since calibration as this would be a safety hazard.

2.2 Calibration

After fixing the cameras at their recording position, we measure their intrinsic and extrinsic projection parameters
in a calibration process. For this process we follow the procedure described in.8 The calibration process has to
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Figure 4. View from the front into the measuring cell. The industrial robot from Fanuc can be seen in the background.

be executed only once after installation or if a camera is moved, replaced or refocused.

From the calibration of the cameras, we know their projection functions relative to the coordinate system of
the measuring volume. I.e. each 3D point in the working volume can be projected onto the sensors by means
of the known projection functions of the cameras. Thus, for a given 3D point (X,Y, Z), the pixel coordinate
(xk, yk) can be calculated for each of the cameras k ∈ [1, 2, 3, 4]. (If the 3D point is outside the area visible from
the camera, (xk, yk) is outside the camera image.)

With these projection functions, we precompute a voxel to camera mapping for each camera: For each voxel
center (Xv, Yv, Zv), the corresponding camera pixel (xvk, yvk) is computed for each of the cameras. We store this
precomputed mapping as an array of pixel coordinates for each camera. I.e., we have four precomputed arrays
each of which contains the pixel coordinates in one of the cameras for each voxel.

2.3 Data Processing

The data processing comprises the following 4 major data processing steps:

1. The separation of the camera pixels into background and foreground. Realized as a pure 2D calculation for
each camera.

2. The assignment of foreground/background information to voxels inside the volume. Each voxel center that
is mapped to a camera pixel classified as “background” is considered to be empty.

3. The classification of the occupied voxels into human, robot and other object based on their topoligical
connection to the front or rear boundary of the measurement volume. Also, the shortest distance between
all human and robot voxels is calculated.

4. Passing the distance information to the robot controller.

We realized the first two parts with a parallel program which uses one CPU core per camera. At the end of
this parallel process, we create the voxel volume describing the volume occupancy. Then, we classify occupied
voxels with a topological connection to the back of the volume as robot, and occupied voxels with connection to
the front as human. After that, we calculate the shortest distance between any human voxel to any robot voxel.
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Figure 5. Separation of foreground and background. From left to right: original camera image, blurred camera image,
foreground/background separation (foreground marked in blue), 3D volume resulting from the combined information of
all four cameras (occupied voxels marked red).

Finally, this distance is sent via USB to a microcontroller board, which sends one of 8 possible binary signals to
the robot controller. Each signal represents a quantized distance.

When the system is started, the measurement cameras each record a background image. To reduce image
noise, this background image is calculated as an average of 25 individual recordings. In addition, we treat it
with a spatial low pass filter (blur). We refer to this blurred background image as reference image. For each
measurement, we then take one image per camera and treat it with the same blur as the background image. We
refer to it as the now-image.

The blur has the effect that 1. camera noise is significantly reduced, 2. there are fewer false detections at
texture edges, e.g. because the camera moves slightly due to vibrations of the cell, and 3. small details such
as dust particles are removed from the image. Generally speaking, the blur filter improves the measurement
robustness of the setup because it increases the signal to noise ratio. The signal is generated by objects with the
size of a human finger or larger. Smaller objects can be ignored and thus be treated as noise.

We transform both the reference image and the now-image into the HSV color space. I.e., we dissect the
images into Hue (color value on the color wheel), Saturation (color saturation) and Value (brightness). A change
of the now-image compared to the background image is detected by pixelwise comparison of the individual
components. In particular, we apply threshold values to the differences of individual components. E.g. for the
saturation values in the background image sb and in the now-image sn, the threshold ts is applied as sn−sb > ts.

Since a certain change of the ambient light is to be tolerated, we apply only a coarse limit to the brightness,
e.g. this can detect a black glove in front of the bright background. Beside this, two threshold values are applied
to the color saturation and the color value difference, respectively. If one of the three threshold values is exceeded
for a pixel, this pixel is classified as foreground, otherwise as background. We chose the threshold values in such
a way that the human fingers and tools like screw drivers are safely classified as foreground while there are no
or almost no false classifications as foreground.

After the binary foreground/background image is created, we expand the detected foreground area by five
pixels in each direction using binary dilation. This further increases the robustness of the system as the volume
which is not marked as empty in the following calculation step increases in size.

During measurement, we look up the foreground/background pixel value in the camera images for each voxel
using the precomputed mappings. We do this lookup once for each camera and voxel. If a voxel is marked as
background by at least one camera, it is considered empty. If a pixel is marked as foreground by each of the
cameras, it is considered occupied. The right most image in Fig. 5 shows such a voxel volume. The voxel size
was set to 20 mm × 20 mm × 20 mm.
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Figure 6. Photographs of the setup for the latency measurements. A) Tripod arm representing a human worker. B)
Tripod arm representing the robot.

3. EXPERIMENTS AND RESULTS

3.1 Latency measurement

The latency which is relevant to the described safety application, is the time span between a change inside the
measurement volume, e.g. the movement of a worker’s hand, and the signal generated at the output of the
measurement system, i.e. the output of the distance value to the robot controller.

We measured this latency with the following method. We positioned two tripod arms with styrofoam balls
at their ends inside the measurement volume (see figure 6). The arm coming in from the back represents the
robot, the one coming in from the front represents the human. As a result, the measurement system is then
sending a binary signal to the robot controller indicating the specific distance between the two arms. We coupled
this signal to the input of an oscilloscope. In addition, a brightness sensor was positioned at the edge of the
measurement volume. The signal from this brightness sensor was connected to a second oscilloscope input.

Before the measurement, we turned off the light in the measurement cell, which resulted in the volume sensor
marking all voxels as occupied because of the large difference in brightness from the reference image. The distance
signal connected to the oscilloscope was therefor turned off by the measurement system. (Instead, the system
sent out a different signal representing zero distance, which was not used for the experiment).

To start the latency measurement, we switched the lights back on. This first resulted in a signal from the
brightness sensor and, after image acquisition and volume occupancy calculation, again in the output of the
correct distance signal to the oscilloscope. Both signals were recorded with the oscilloscope and logged. Thus,
the time difference between the two signals is an end-to-end latency which takes into account all partial latencies
of the system. The measurement was repeated 50 times. The mean value of the measured end-to-end latencies
was 43.5 ms, ranging from 32.9 ms to 53.2 ms.

3.2 Uncertainty of the distance measurement

To test whether the volume occupancy sensor can reliably estimate the minimum distance between human and
robot in different areas of the measurement volume, we made the following experiment. Due to the selected
voxel size of 20 mm, an average error of at least 40 mm is to be expected, whereby the distance should always be
underestimated for safety reasons.

We placed a tripod arm with a Styrofoam ball representing a human arm at a fixed position from the front in
the measurement volume. We placed a second similar tripod arm representing the robot arm from the back side
of the volume, successively at 7 different positions. At each position, the distance between the two Styrofoam
balls was determined with the volume occupancy sensor. Each of the 7 positions was repositioned a total of 10
times by hand, such that the sphere was approximately (but not exactly) at the same position again (estimated
deviation about 5 to 10 cm). Thus, a total of 7 · 10 = 70 independent distance measurements were made.

In addition, we measured the correct distance between the two spheres in each case with a GOBO projector-
based 3D sensor.9,10 This sensor can measure the 3D geometry of objects with an accuracies in the order of
100 µm. For each measurement, we fitted two spheres to the 3D data from this sensor and calculated the distance

Proc. of SPIE Vol. 12098  120980B-7



between their surfaces. We consider these distances ground truth. The difference between the distance estimated
by the voxel carving sensor and the ground truth for each of the measurements is depicted in figure 7.

The distance differences determined are all negative, i.e. the distances estimated with the voxel carving sensor
are shorter than the ground truth. This is unproblematic with regard to the safety requirements.
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Figure 7. Distance error of the volume sensor: Distance between the two spheres determined by the voxel carving sensor
minus ground truth sphere distance. The determined distances are always too short, never too long. (The dots representing
individual measurements are slightly distributed along the x-axis to improve visibility.)

4. DISCUSSION

We successfully tested that the measured distances between robot and human worker are always shorter than
the true distances. The reason is that the voxel carving method (as implemented here) marks voxels as occupied
if they are not explicitly marked empty by one of the cameras. This can result in larger than actual volumes
classified as human or robot, especially in the border regions where only one or two cameras observe the voxels.
In addition, our experiments show that it is possible to send a new distance signal to the robot in less than
53.2 ms (43.5 ms average) after an actual change within the working volume has happened.

These two experimental results show that the concept which we presented here is suitable to prevent safety
hazards in human-robot-interaction spaces.

5. CONCLUSION

In this contribution we applied the shape from silhouette method to ensure the safety in an interaction booth
for the collaboration between a fast industrial robot and a human worker. Our multi-camera sensor continu-
ously observes the working space and outputs an approximate distance between robot and human to the robot
controller.

We chose a voxel carving based data processing method which inherently guarantees that the measured
distance is never overestimated (but may be underestimated). We also validated this property experimentally.

In combination with the demonstrated fast end-to-end latency, these results are promising in every respect.
In the future, we intend to re-implement the presented sensor on a real-time capable hardware, e.g. an FPGA.
Further ideas include extending the system for entire working halls and taking into account semi-stationary
objects within the working volume.
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