

FRAUNHOFER INSTITUTE FOR APPLIED OPTICS AND PRECISION ENGINEERING IOF

- 1 Nd:YAG <111> + YAG <111> diameter 25 mm, thickness 3 mm.
- 2 Spinell (polycrystalline) + glass (amorphous) diameter 25 mm, thickness 9 mm.
- 3 Sapphire <0001> + Sapphire <0001> 25 x 12 mm², thickness 12 mm.

HYDROPHILIC BONDING FOR AMORPHOUS AND CRYSTALLINE HEAVY-DUTY OPTICS

Fraunhofer Institute for Applied Optics and Precision Engineering IOF

Albert-Einstein-Straße 7 07745 Jena, Germany

Director

Prof. Dr. Andreas Tünnermann

Head of Business Unit Precision Engineering Components and Systems Dr. Ramona Eberhardt

Contact

Dr. Gerhard Kalkowski Phone +49 3641 807-337 gerhard.kalkowski@iof.fraunhofer.de

www.iof.fraunhofer.de

Objective

Mineralic bonding technology "at the nanoscale" for glasses and transparent crystalline materials, ultra-thin and high-temperature adequate for heavy-duty applications.

Pre-conditions

- Oxidic materials, in particular with high contents of SiO₂ or Al₂O₃
- Extremely smooth (polished) surfaces roughness < 1 nm RMS*
- Surfaces of high flatness or conform, flatness at least λ/10 PV*

* λ: wavelength (@ 632 nm)
PV: peak-to-valley
RMS: root-mean-square

Bond characteristics

- Full transparency (bonding area is "invisible")
- No uncontrolled creep / drift under mechanical load
- No outgassing at elevated temperatures
- No stress from thermal mismatch at temperature drifts (for identical materials)
- Assembly of individual parts without gap "accurate to gauge blocks"

Applications

- UV, VIS and IR-Optics (in transmission and reflection)
- Laser applications (beam guidance, cooling)
- Space applications
 (extremely stable integrated optics)