1 Antireflective structure on PMMA with SiO₂-coating (A) and with additional hydrophobic layer (B).
2 Wetting behaviour and contrast of AR-structured PMMA with (A) and without (B) additional SiO₂-coating.
3 Lotos-effect in nature.

Hydrophobization and antifogging combined with antireflection properties

Motivation
Antireflective nanostructures can be produced on many polymers by plasma etching. The structure formation occurs self-organized or after depositing of a thin layer. Typically the modified surfaces are soft and damageable. Additional thin layers are useful to protect the surfaces mechanically and to modify the wetting behaviour in various ways.

- PMMA: cleaning with flowing water/detergent
- Zeonex: cleaning with cloth/ethanol
- Contact angle >150°
- Water drop roll-off angle on PMMA <10°

Hydrophilic surfaces providing antifogging properties
Thin oxide layers are useful to create an antifogging effect on surfaces with antireflective structure. In addition, antifogging and antireflection can be achieved simultaneously by the direct plasma-etching of water absorbing polymers, i.e. antifogging lacquer Seeklear™ (Exxene Corp.).

Easy cleanable hydrophobic and superhydrophobic surfaces
Superhydrophobicity can be achieved by depositing layer systems comprising at least a fluoralkylsilane component on top of plasma-etched polymers (i.e. PMMA). The procedure is useful to remove fingerprints easily.

Fraunhofer Institute for Applied Optics and Precision Engineering IOF
Albert-Einstein-Straße 7
07745 Jena

Director
Prof. Dr. Andreas Tünnermann
Phone +49 3641 807-0
andreas.tuennermann@iof.fraunhofer.de

Contact
Dr. Ulrike Schulz
Phone +49 3641 807-344
ulrike.schulz@iof.fraunhofer.de

www.iof.fraunhofer.de