

Fraunhofer Institute for Applied Optics and Precision Engineering IOF

Laser-induced ignition for combustion engines

Ambition

Stricter emissions and consumption standards require new concepts for internal combustion engines. Downsizing and lean-burn strategies improve efficiency and reduce emission but demand better ignition processes.

Laser-induced ignition offers significant advantages over traditional electric spark ignition and is suitable for both classic and new combustion processes, and new "green fuels."

Advantages

- Ignition of lean mixtures and new fuels
- Improved engine efficiency and reduced fuel consumption
- Longer spark plug life (no electrode)
- Static or dynamic laser focusing allows for free positioning of ignition point
- No flame quenching

Four laser spark plugs installed on a gas engine by company 2G Energy AG

Our expertise

We develop complex and ultra-stable optomechatronical systems for harsh operating conditions like extreme temperatures, vibrations, and high/low pressure.

Design, manufacturing, system integration, packaging and testing serves for the complete value chain for prototypes and feasibility experiments.

Applications

- Combustion engines for energy co-creation
- Large marine engines
- Rocket propulsion systems for space
- Energy generation in hydrogen and methane plants

A close-up view. On the left: without pre-chamber. On the right: with pre-chamber.

Contact

is shown.

Department

Opto-mechatronical Components and Systems

Head of Department

during performance tests. The phenomeon of air breakdown

Dr. Erik Beckert Phone: +49 3641 807-338 erik.beckert@ iof.fraunhofer.de

Fraunhofer IOF

Albert-Einstein-Strasse 7 07745 Jena Germany

www.iof.fraunhofer.de

scan for more info