

FRAUNHOFER INSTITUTE FOR APPLIED OPTICS AND PRECISION ENGINEERING IOF

- 1 Camera image after overlay of all channels.
- 2 Spectra of selected objects in the scene:
 - green leaf of plant (natural)
 - green leaf of plant (artificial)
 - green plastic plant pot
 - red apple
- 3 Demonstration system for multispectral imaging.

Fraunhofer Institute for Applied **Optics and Precision Engineering IOF**

Albert-Einstein-Straße 7 07745 Jena Germany

Director

Prof. Dr. Andreas Tünnermann

Head of Business Unit Optical Components and Systems

Prof. Dr. Uwe Zeitner

Contact

Dr. Robert Brüning Phone +49 3641 807-360 robert.bruening@iof.fraunhofer.de

www.iof.fraunhofer.com

COMPACT MICROOPTICAL SYSTEM FOR MULTISPECTRAL IMAGING

Ambition

Lightweight system for multispectral imaging of extended scenes with high spatial and spectral resolution in single shot acquisition.

Application

- Precision agriculture, plant monitoring
- Security and surveillance
- Biomedical inspection
- Recycling, industrial sorting

Characteristics

- Overall size

- Spectral sampling
- Number of channels

- Pixel pitch

7.2 mm

450-850 nm

~ 6 nm (linear)

400x400 pixel

68° (diagonal)

4.2 LP/°

7.4 µm

10-14 nm

66

- 60x60x28 mm³
- Total track length
- Spectral range
- Spectral resolution

- Image resolution
- F-number (F/#)
- Field of view
- Spatial resolution

Technical concept / Technology

- Multi-aperture imaging principle
- System concept based on linear varying spectral filter, microlens-array, baffle array and full frame format image sensor (CCD)
- Linear sampling of the spectral range in the entire field of view
- Adapted image processing for the analysis of spectra from a raw image
- Origination of lens array on wafer scale by reflow of photo-resist and subsequent **UV-molding process**