Benetzungsanalyse an mikro- und nanostrukturierten Oberflächen

Marcel Flemming

Luisa Coriand

Angela Duparré

Abb. 1: Kontakt- und Abrollwinkelmessung (Gerät: OCA 20, Dataphysics).

Fig. 1:

Measurement of dynamic contact angles and sliding /roll-off angles (instrument: OCA 20, Dataphysics).

Für intrinsisch (chemisch) hydrophobe Oberflächen wurde durch empirische Korrelation von Rauheits- und Benetzungseigenschaften ein Wert $\kappa_{\rm p} > 0.3$ als notwendiges Kriterium für Ultra-Hydrophobie gefunden (zum Vergleich: Das Lotusblatt als Beispiel für Ultra-Hydrophobie schlechthin weist einen κ_{P} -Wert von 0,7 auf). Die Struktur-Eigenschafts-Korrelation ergab weiterhin, dass eine umfassende Benetzungscharakterisierung nur mittels dynamischer Kontaktwinkelmessungen, d. h. Bestimmung des Fortschreite- und Rückzugswinkels, sowie durch Abgleit- bzw. Abrollwinkelmessungen möglich ist (Abb. 1).

Im Folgenden sind beispielhaft Ergebnisse an laserstrukturierten hydrophobisierten Stahloberflächen /2/ dargestellt. Die Analyse der µm- und nm-Rauheitsstruktur von Oberfläche A (Abb. 2) zeigt, dass die erzielten ultrahydrophoben Eigenschaften, d. h. Fortschreite- und Rückzugswinkel > 140° (Abb. 3) und Abrollwinkel < 10°, mit einem κ_{R} -Wert von 0,5 korrelieren. Im Gegensatz dazu wurde die Oberfläche B (Abb. 4) anhand eines zu niedrigen Benetzungsparameters von $\kappa_{R} = 0,14$ als nicht ultra-hydrophob bewertet. Die dann gemessene hohe Kontaktwinkelhysterese (Differenz zwischen Fortschreite- und Rückzugswinkel) bestätigte den Befund (Abb. 5).

Im Gegensatz zur µm- und nm-Strukturierung bei ultra-hydrophoben technischen Oberflächen erfolgt bei optischen Oberflächen mittels »Steuerung« durch $\kappa_{\rm B}$ eine Fokussierung auf nm-Strukturen, um optische Verluste kontrolliert niedrig zu halten. Dies wird gegenwärtig im Förderprojekt KRONOS realisiert /3/.

The wetting behaviour of optical and technical surfaces (e.g. architectural glass, engineering components) is of great importance for cleaning processes and various applications. Wetting properties are considerably determined by surface roughness in addition to the chemical nature of the liquid and solid. The technology for the realization of e.g. ultra-hydrophobic self-cleaning surfaces has to generate a specific surface structure. In order to adapt the technological process and hence the wetting properties of these surfaces, knowledge about wetting relevant surface structures is important. For that purpose, a novel method for the quantification of wetting relevant surface roughness was developed at the IOF. Specific roughness analysis based on power spectral density functions leads to a wetting parameter $\kappa_{\rm p}$ /1/. Unlike simple roughness parameters (e.g. rms roughness) κ_{R} considers both the vertical and lateral dimensions of roughness structures.

Empirical correlation between the roughness and wetting properties of samples with various degrees of roughness but identical intrinsic hydrophobicity revealed that ultra-hydrophobicity is essentially associated with κ_{R} values above 0.3 (for comparison: for the well known ultra-hydrophobic lotus leave, a $\kappa_{\rm R}$ value of 0.7 was determined). Appropriate correlation between the roughness and wetting properties also requires advanced wetting characterization by dynamic contact angle (advancing and receding contact angles) and sliding/roll-off angle measurements (Fig. 1).

The following examples show results obtained on laser-structured steel surfaces with hydrophobic top coatings /2/. The analysis of micrometer- and nanometer-sized roughness components of the ultra-hydrophobic sample A (Fig. 2) yielded a $\kappa_{\rm B}$ value of 0.5 which was associated with advancing and receding contact angles > 140° (Fig. 3) and a roll-off angle < 10°. In comparison, a $\kappa_{\rm B}$ value of 0.14 predicted non-ultra-hydrophobicity for sample B (Fig. 4) which was confirmed by a measured high contact angle hysteresis (difference of advancing and receding contact angle; Fig. 5).

The ultra-hydrophobicity of optical surfaces is necessarily based on nanometer-sized roughness structures in order to maintain optical guality (low

Abb. 2:

Laserstrukturierte ultra-hydrophobe Stahloberfläche (Probe A) links: LSM-Messung 460 x 460 µm² (Höhenskala: 30 µm); rechts: AFM-Messung 1 x 1 µm², (Höhenskala: 700 nm).

Fig. 2:

Laser-structured ultra-hydrophobic steel surface (sample A); left: LSM measurement 460 x 460 μ m² (height scale: 30 μ m); right: AFM measurement 1 x 1 μ m² (height scale: 700 nm).

Abb. 4: Laserstrukturierte hydrophobe Stahloberfläche (Probe B); links: LSM-Messung 460 x 460 μm² (Höhenskala: 5 μm); rechts: AFM-Messung 1 x 1 μm² (Höhenskala: 30 nm).

Fig. 4:

Laser-structured hydrophobic steel surface (sample B); left: LSM measurement 460 x 460 µm² (height scale: 5 µm); right: AFM measurement 1 x 1 µm² (height scale: 30 nm). scatter losses). Systematic roughness design by means of the parameter $\kappa_{\rm B}$ constitutes a key to a cost-efficient technological process and is currently part of the BMBF joint project KRONOS /3/.

References:

- /1/ Flemming, M.; Duparré, A.: Design and characterization of nanostructured ultrahydrophobic coatings, Applied Optics 45 (2006) 1397–1401.
- /2/ Herstellung: IWS Dresden.
- /3/ BMBF-Verbund KRONOS: Kratz- und schmutzresistente geformte Glasoberflächen durch steuerbar nanostrukturierte Sputterschichten.

Abb. 3:

Dynamische Kontaktwinkelmessung an laserstrukturierter ultra-hydrophober Stahloberfläche (Probe A); links: Fortschreitewinkel; rechts: Rückzugswinkel.

Fig. 3:

Dynamic contact angle measurement on laser-structured ultra-hydrophobic steel surface (sample A); left: advancing contact angle; right: receding contact angle.

Abb. 5: Dynamische Kontaktwinkelmessung an laserstrukturierter hydrophober Stahloberfläche (Probe B);

links: Fortschreitewinkel; rechts: Rückzugswinkel.

Fig. 5:

Dynamic contact angle measurement on laserstructured hydrophobic steel surface (sample B); left: advancing contact angle; right: receding contact angle.